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LETTER TO THE EDITOR 
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Urbana-Champaign, 110 West Green St, Urbana, IL 61801, USA, and Laboratoire de 
Physique de L’Ecole Normale SupCrieure, 24 rue Lhomond, 75231 Paris Cedex 05, France 

Received 20 January 1983 

Abstract. We give an exact mapping of the problem of an electron in a one-dimensional 
random potential onto a Yang-Lee model with random imaginary fields and random 
bonds. The resistance and inverse localisation length are given respectively by the partition 
function and the free energy of the spin model. The allowed states and the singular point 
of their density at the band edge are mapped onto the zeros of the partition function and 
the Yang-Lee edge. 

Similar relations are found on a Bethe lattice near the critical point for the pure 
models. Extending naively to the random case, these relations reproduce the field theory 
of Harris and Lubensky with the expansion below eight dimensions. 

In the presence of randomness, however, the two models differ for any dimension 
greater than one due to the interactive character of the spin model. This causes its density 
of states to vanish at the edge in contrast to the p = 0 of the non-interacting electronic 
model. 

Since the original paper of Anderson (1958), many theoretical efforts have been 
invested in trying to reach better understanding of the motion of a particle moving 
in a random potential (for a review see Thouless 1974). Among those attempts, many 
have tried to relate the critical behaviour near the mobility edge to that of other 
known models. It is now well established that above two dimensions, the critical 
behaviour is described by a nonlinear, non-compact cr- model of matrices of the order 
2n in the limit n + 0 (Wegner 1979). This was also confirmed by scaling results 
(Abrahams et al 1979). On the other hand, the upper critical dimensionality was 
suggested to be eight (Harris and Lubensky 1981). Their model is in the same 
universality class as the Yang-Lee (YL) model (Yang and Lee 1952) with random 
imaginary fields (Parisi and Sourlas 1981, Lubensky and McKane 1981). Thus, the 
expansion in E = 8 - d  is the same as for the YL model near six dimensions (Fisher 
1978). However, this theory predicts there p # 0 for the exponent of the density of 
states as well as a singularity in the one-particle Green function and therefore probably 
has no real physical meaning. 

The one-dimensional problem stands by itself. All states are localised for any 
degree of disorder (Thouless 1974) and for all energies except at the band edge of 
the non-random model (Azbel 1980, Kantor and Kapitulnik 1981), in particular at 
E = 0, if the randomness is purely off -diagonal. Recently, the dependence of the 
localisation length on the impurities concentration for different Fermi levels has been 
widely investigated (for recent reviews, see e.g. Erdos and Herndon 1982). 

@ 1983 The Institute of Physics L243 
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In the present letter we relate directly the one-dimensional (ID) electronic model 
to the ID Ising model in an imaginary magnetic field, namely the ID YL model, both 
in the random and non-random cases. We first show a simple correspondence between 
these two models in the non-random case. As a result, it will be shown that both 
models have the same spectrum of singularities, namely, allowed states and zeros of 
the partition function, respectively. The band edge of the extended states is the image 
of the YL edge in the spin model. This mapping follows from a direct correspondence 
between the transfer matrices of both models. 

We start with the ID Schrodinger equation for an electron having an energy 
E = h2k2 f2m 

h2  d24  h2k2 
2m dx2 2m -- -+ c v"(x-x")4=-4* 

After being scattered from the potential at the site 1 ( X l ) ,  its wavefunction is 

~ K ( I )  =TI  eikX +pi e-ikX. (2) 

The transfer matrix relating ( T [ + ~ ,  to (n, p l )  is a general matrix of the form 

where A and B are properties of the potential only and lA12-IB12 = 1 (an asterisk 
denotes complex conjugation). This matrix can be parametrised and rotated into 

The YL reduced Hamiltonian is 

It has a similar transfer matrix 

TyL = (2 sinh2 K)lr2i? 

Then if we identify 

A = [ 2  ~inh(2K) l - I '~  eK and y = 2 h  

y is given simply by ka  + S  where S is the phase shift of the potential and a is the 
lattice constant. 

All the properties of the special states as a function of k are therefore similar. 
The same singular behaviour in the spectrum occurs for both models at the band 
edge defined by the relation (see e.g. Hori 1968) 

T r f = O .  (6) 

In the random case, we cannot perform an overall rotation to the canonical form 
of f, since the matrices do not commute in general. However, the mapping between 
the models and their critical behaviour is completely independent of the particular 
representation. In order to demonstrate the local correspondence in the random case, 
we choose a slightly different approach introduced by Azbel (1980) and Abrahams 
and Stephen (1980). 
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Based on (1) they defined the quantities 

r;' = (l/n) e x p [ - i k K + ~ - X ~ ) I ,  r ;  = ( P I / T ~  exp[-ik(Xl+l +XI)]. (7a, 6 )  

The same quantities, but for a sequence of L scatterers such as RL and RL, follow 
the recursion relation 

Using the Landauer (1970) formula, the resistance R of the chain is given by 

R = (RL('. (9) 

It is now a straightforward calculation to show that (see also Azbel 1980) 

. .. 
l= l ,L - l  

where Sr are spin variables that can take the values *l, KI =aln[(l+A?)/A?] and 
hl = (ka, + 6, ) .  Here A,  and S1 are the scatterer's amplitude and phase shift, respectively, 
as discussed before, af =X1+l -XI and C is the normalisation constant, which depends 
only on the boundary conditions and the overall combination of amplitudes. 

Formula (10) shows that we can describe the scattering properties of an electron 
in a ID random potential by an king YL partition function. As the relation between 
them is local, it is applicable to any ID potential with random distances and random 
scatterers (characterised by their amplitudes and phase shifts). In particular, we see 
that random distances induce random imaginary fields, while random scatterers result 
in both random fields and random bonds. 

As mentioned by Azbel (1980) this relation yields (except for a set of measure 
zero) a resistance growing exponentially with the length. The well known result 
(Abrahams et a1 1979, Abrahams and Stephen 1980) that the typical resistance may 
be very different from its average follows naturally from the fact that all the moments 
of the partition function grow exponentially. Meaningful statistics may be extracted 
only for an additive function, e.g. the free energy. In the electronic case its absolute 
value is proportional to the inverse localisation length. 

Once the partition sum grows more slowly than exponentially, we have a diverging 
localisation length and therefore a critical point. Two cases where this occurs are 
worth mentioning: the zero-field and the pure limit. When only random bonds are 
present (with no random or homogeneous field), the matrices commute and the 
problem is solvable. For the electron problem, it will correspond to correlated random 
distances and phase shifts such that h1 = 0. Alternatively, this may be realised in a 
Kronig-Penny (1931) model where equally spaced S -functions with different random 
strengths form the potential (Kantor and Kapitulnik 1981). At the band edge (ka = 0, 
T, etc) the resistance does not grow exponentially with the length but rather with its 
square (Kantor and Kapitulnik 1981, Azbel and Soven 1982). The second-quantised 
formulation of this case yields the well studied pure off-diagonal randomness with 
E = 0 (see e.g. Shapir et a1 1982 and references therein). Note that in many random 
cases the gap is filled with the tail of localised states (Thouless 1974). Similar effects 
in the spin model are the origin (at higher dimensions) of the Griffiths singularities 
(Griffiths 1969, Bray and Moore 1982, Schwarz et a1 1982). 
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The non-random case is recovered after setting hl = h and Kl= K, i.e. the same 
values for all the scatterers. We then get the known density of states (density of zeros 
in the Yang and Lee (1952) model) 

g(h) = (2.n)-'(sin h)/(sin2 -e-4k)1/2 

as well as all the other results which followed from the direct correspondence (e.g. 
by rotating all the matrices uniformly) described above. 

It is very tempting to extend the relations to higher dimensions. The natural way 
is to relate the Green functions to the spin-spin correlations. Indeed, in ID the 
complex local magnetisation is related to the difference in the amplitudes of the 
electron described by the incoming and outgoing channels. It is also given by the 
derivative of the free energy with respect to the uniform field (energy). In particular, 
the magnetisation diverges at the allowed states (namely in the band) and its singular 
part is proportional to the density of states. However, already in 2 ~ ,  one immediately 
sees that the 'equations of motions' which relate correlation functions of the spin 
model at different points are highly nonlinear and non-local in the presence of a 
magnetic field, in contrast to the inhomogeneous Schrodinger equation. This explains 
why although the pure electronic model is soluble in any dimension (with (E -E,)'d-2'/2 
type singularity at the band edge), the pure YL model is an interacting system with 
non-classical exponents below six dimensions (Fisher 1978) and so far has no exact 
solution (except for ID). It is interesting to note that some critical properties of the 
random YL model in D - 2 and D - 3 are probably known by their correspondence to 
the D - 2 pure model (Parisi and Sourlas 1981). This is an exceptional example where 
the random model is more tractable than its pure counterpart. However, these results 
only confirm that the YL random behaviour is unrelated to the mobility edge singularity 
(i.e. they have p # 0) at these dimensions. 

The complexity already arises on strips which are infinite in one direction but with 
finite width L (Fisher 1980). The YL transfer matrix has 2L x 2L elements while the 
electronic one is only of order 2L x 2L. On these strips the electronic model must 
therefore be described by a ID chain of generalised spins with N = 2L components. 
The resulting model will be discussed elsewhere (Shapir and Kapitulnik, to be 
published). 

The YL and electronic models become related again at higher dimensions. The 
limit D + 00 may be achieved on a Bethe lattice (see e.g. Muller-Hartmann and Zittartz 
1974). The pure YL problem on a tree has been solved (Bessis et a1 1976) as well as 
the pure electronic model on that lattice (Thorpe and Wearie 1971, Dancz and Edwards 
1973). With the same mapping as for ID, the two models have the same type of 
singularity, (h  -hc )* l2 ,  for the density of states near the same edge which is related 
to the coordination number of the tree. The YL model becomes linear and local near 
its critical point due to the ID character (no loops) of this lattice. This is easily shown 
by considering another equivalent model, namely the monomer-dimer model (Shapir 
1982). It is straightforward to show that the monomer-monomer correlation in this 
model obeys, on the tree, the same recursion relations as the electronic Green function 
(Thorpe and Wearie 1971), though this relation cannot be pursued when random 
fugacities are assigned to the monomer. We thus confirm that the two models share 
the same singular behaviour in the pure case, for high enough dimensions. 

Including fluctuations, it has been shown (Fisher 1978) that the YL model has 
D ,  = 6 with expansion in E = 6 -D.  The effect of random imaginary fields is to shift 
the critical dimensionality (Imry and Ma 1975) to D,  = 8 with the same E = 8 - D  
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expansion (Parisi and Sourlas 1981). The effect of random bonds is completely similar 
since along the critical line H, = H,(K) ,  random couplings would result in local random 
fields. This is consistent with the relation between the crossover exponents for both 
cases: a = y for this model. 

So far these relations seem to explain in a natural way why the field-theoretical 
results of Harris and Lubensky (1981) coincide with the random YL exponents near 
8~ (Lubensky and McKane 1981). However, their field theory predicts a vanishing 
density of states at the mobility edge due to the singularity in the 'diagonal' sector of 
their order parameter, i.e. (Q'+(E)) = (G'(E +io))*. It has been suggested that higher 
correlation functions may become singular deeper in the gap due to attraction of the 
effective potential (M Stone, private communication, see also Parisi 1982). Wegner 
(1981) has advanced other arguments as to why the cut has to extend into the gap 
with n o  singularity in the density of states. In SD this has been confirmed from 
numerical simulations (Kirkpatrick 198 1). Finally, very recently, Kunz and Souillard 
(1982) have proved that for a wide class of potentials the density of states is analytic 
on the Bethe lattice although a mobility edge exists. 

We thus observe that due to its interactive character, the random YL model differs 
from the localisation problem in all dimensions greater than one (including the Bethe 
lattice on which they may be related only in the pure limit). This is also in accordance 
with recent results concerning many-electron systems, in which interactions, as well 
as randomness, are taken into account. New singularities then occur in the one-particle 
Green function and the density of states does vanish at the mobility edge, (see e.g. 
Fradkin 1982 and references therein). 

In conclusion, we have shown a one-to-one mapping of the electron in a random 
potential problem onto the random YL model in one dimension. The same relation 
holds between the two models near the critical point on a Bethe lattice without 
randomness. The YL model, being a nonlinear (interacting) system, is more compli- 
cated than the electronic one for all dimensions greater than one. The question of 
whether it can be formulated as a relatively simple many-body interacting model is 
currently under investigation. 
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